黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測(cè)定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


          化工儀器網(wǎng)>技術(shù)中心>專(zhuān)業(yè)論文>正文

          歡迎聯(lián)系我

          有什么可以幫您? 在線(xiàn)咨詢(xún)

          A guide to photosynthetic gas exchange measurements

          來(lái)源:北京雅欣理儀科技有限公司   2024年07月10日 15:57  

          Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. 




          Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.

          637908291116770540303.jpg


          For decades, gas exchange techniques using infrared gas analysers (IRGAs) have been widely used to measure fluxes of CO2 and H2O into and out of leaves and, less frequently, nonfoliar tissues. These measurements allow for assessments of the physiological performance of leaves and to benchmark the biochemical capacity for photosynthesis . They have enabled measurements of in situ photosynthetic CO2 assimilation (A) and stomatal conductance (gs) in diverse ecosystems from the tropics (e.g., Carter et al., 2021; Slot & Winter, 2017) to the arctic (Rogers et al., 2019), and from grasslands to forests to agricultural fields (e.g., Coast et al., 2021; Dillaway & Kruger, 2010; Koester et al., 2016; Wohlfahrt et al., 1999).

          Gas exchange measurements can test how fluxes of CO2 and H2O between the leaf and the atmosphere change as environmental conditions in the leaf chamber are manipulated (e.g., Ball et al., 1987; Leakey et al., 2006; Li et al., 2021; Miner et al., 2017; Wolz et al., 2017) and how long-term growth under different environmental conditions impacts rates, biochemical capacity and diffusional limitations of photosynthesis (see Ainsworth & Long, 2005; Medlyn et al., 2002; Wittig et al., 2007; Yan et al., 2016 for meta-analyses). Gas exchange measurements have also improved our understanding of the physiology of species operating different types of photosynthesis (such as C3, C4, CAM) (Hogewoning et al., 2021; Lundgren et al., 2016; Sage & Kubien, 2007; Schuster & Monson, 1990).

          Several introductory guides to gas exchange have been published, mostly focusing on the details of a particular measurement technique (Busch, 2018; Evans & Santiago, 2014; Haworth et al., 2018; Long & Bernacchi, 2003; Parsons et al., 1997). In the following, we give an overview of the biochemical and biophysical photosynthetic processes that can be investigated with gas exchange measurements and outline the parameters that can be estimated. We then discuss suitable approaches for quantifying these parameters with photosynthetic gas exchange techniques in C3 plants, which operate the dominant photosynthetic pathway. However, in many cases the approaches can be applied to C4 or CAM species with appropriate modifications, some of which are discussed in this article.

          While recording gas exchange data with current commercially available equipment is relatively easy, the obtained data are not necessarily meaningful. Both the correct experimental design and the correct data interpretation are crucial for obtaining high quality information. We therefore include here “how-to” tips that have not been part of prior guides. Of course, the specific design of commercial gas exchange equipment varies between manufacturers and the reader should refer to the manufacturer manuals for their operation. 


          2 KEY PARAMETERS OBTAINED FROM GAS EXCHANGE MEASUREMENTS

          Photosynthetic CO2 fixation is the result of a complex set of biochemical and biophysical processes, many of which can be probed with gas exchange techniques. Gas exchange measurements inform us about diverse aspects of carbon and water relations, ranging from processes associated with the light-dependent and light-independent reactions to CO2/H2O diffusion and the sink capacity of a leaf. The only information that gas exchange measurements give us directly are concentrations of CO2 and H2O and the associated net fluxes. However, a wide range of parameters can be estimated from these values indirectly, based on certain assumptions. These parameters can be crudely divided into three categories: The first category informs on the ‘maximum’ capacities of the leaf, and its parameters describe the intrinsic properties of a leaf's investment into different photosynthetic aspects. These parameters may have a fixed temperature response or may change throughout leaf development but can otherwise be treated as constants. The second category informs on the current physiological state of a leaf, that is, the ‘instantaneous’ or ‘effective’ rates that are realised during the instance of the measurement. These are variables that can be expected to change in the short-term (seconds to hours) with changing environmental conditions, such as light intensity, atmospheric [CO2] or water status. The third category includes parameters that describe some aspect of photosynthetic performance, but may not directly correspond to a single identifiable physiological trait. Examples include the CO2 concentration at which A transitions from one biochemical limitation to another, or the relative contribution of different physiological processes limiting A.

          1720597590452.jpg



          Busch, F.A., Ainsworth, E.A.,Amtmann, A., Cavanagh, A.P., Driever, S.M., Ferguson, J.N.et al. (2024) A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice andpotential pitfalls. Plant, Cell & Environment, 1–21.https://doi.org/10.1111/pce.14815A GUIDE TO PHOTOSYNTHETIC GAS EXCHANGE MEASUREMENTS | 21


          2024.07.10

          免責(zé)聲明

          • 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
          • 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀(guān)點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類(lèi)作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
          • 如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
          企業(yè)未開(kāi)通此功能
          詳詢(xún)客服 : 0571-87858618
          南木林县| 聊城市| 祁阳县| 瑞丽市| 夹江县| 定结县| 思茅市| 财经| 阳朔县| 哈密市| 龙门县| 民和| 莱州市| 山西省| 锦州市| 横山县| 苏尼特左旗| 隆安县| 马尔康县| 忻城县| 胶州市| 卓尼县| 南江县| 沙河市| 通江县| 金塔县| 玉溪市| 洱源县| 三明市| 宾川县| 宿州市| 屯留县| 尖扎县| 明水县| 融水| 日喀则市| 原阳县| 丰城市| 文化| 叙永县| 新宾|