紫外吸收光譜 UV
分析原理:吸收紫外光能量,引起分子中電子能級(jí)的躍遷
譜圖的表示方法:相對(duì)吸收光能量隨吸收光波長(zhǎng)的變化
提供的信息:吸收峰的位置、強(qiáng)度和形狀,提供分子中不同電子結(jié)構(gòu)的信息
熒光光譜法 FS
分析原理:被電磁輻射激發(fā)后,從ZUI低單線激發(fā)態(tài)回到單線基態(tài),發(fā)射熒光
譜圖的表示方法:發(fā)射的熒光能量隨光波長(zhǎng)的變化
提供的信息:熒光效率和壽命,提供分子中不同電子結(jié)構(gòu)的信息
紅外吸收光譜法 IR
分析原理:吸收紅外光能量,引起具有偶極矩變化的分子的振動(dòng)、轉(zhuǎn)動(dòng)能級(jí)躍遷
譜圖的表示方法:相對(duì)透射光能量隨透射光頻率變化
提供的信息:峰的位置、強(qiáng)度和形狀,提供功能團(tuán)或化學(xué)鍵的特征振動(dòng)頻率
拉曼光譜法 Ram
分析原理:吸收光能后,引起具有極化率變化的分子振動(dòng),產(chǎn)生拉曼散射
譜圖的表示方法:散射光能量隨拉曼位移的變化
提供的信息:峰的位置、強(qiáng)度和形狀,提供功能團(tuán)或化學(xué)鍵的特征振動(dòng)頻率
核磁共振波譜法 NMR
分析原理:在外磁場(chǎng)中,具有核磁矩的原子核,吸收射頻能量,產(chǎn)生核自旋能級(jí)的躍遷
譜圖的表示方法:吸收光能量隨化學(xué)位移的變化
提供的信息:峰的化學(xué)位移、強(qiáng)度、裂分?jǐn)?shù)和偶合常數(shù),提供核的數(shù)目、所處化學(xué)環(huán)境和幾何構(gòu)型的信息
電子順磁共振波譜法 ESR
分析原理:在外磁場(chǎng)中,分子中未成對(duì)電子吸收射頻能量,產(chǎn)生電子自旋能級(jí)躍遷
譜圖的表示方法:吸收光能量或微分能量隨磁場(chǎng)強(qiáng)度變化
提供的信息:譜線位置、強(qiáng)度、裂分?jǐn)?shù)目和超精細(xì)分裂常數(shù),提供未成對(duì)電子密度、分子鍵特性及幾何構(gòu)型信息
質(zhì)譜分析法 MS
分析原理:分子在真空中被電子轟擊,形成離子,通過(guò)電磁場(chǎng)按不同m/e分離
譜圖的表示方法:以棒圖形式表示離子的相對(duì)峰度隨m/e的變化
提供的信息:分子離子及碎片離子的質(zhì)量數(shù)及其相對(duì)峰度,提供分子量,元素組成及結(jié)構(gòu)的信息
氣相色譜法 GC
分析原理:樣品中各組分在流動(dòng)相和固定相之間,由于分配系數(shù)不同而分離
譜圖的表示方法:柱后流出物濃度隨保留值的變化
提供的信息:峰的保留值與組分熱力學(xué)參數(shù)有關(guān),是定性依據(jù);峰面積與組分含量有關(guān)
反氣相色譜法 IGC
分析原理:探針?lè)肿颖A糁档淖兓Q于它和作為固定相的聚合物樣品之間的相互作用力
譜圖的表示方法:探針?lè)肿颖缺A趔w積的對(duì)數(shù)值隨柱溫倒數(shù)的變化曲線
提供的信息:探針?lè)肿颖A糁蹬c溫度的關(guān)系提供聚合物的熱力學(xué)參數(shù)
裂解氣相色譜法 PGC
分析原理:高分子材料在一定條件下瞬間裂解,可獲得具有一定特征的碎片
譜圖的表示方法:柱后流出物濃度隨保留值的變化
提供的信息:譜圖的指紋性或特征碎片峰,表征聚合物的化學(xué)結(jié)構(gòu)和幾何構(gòu)型
凝膠色譜法 GPC
分析原理:樣品通過(guò)凝膠柱時(shí),按分子的流體力學(xué)體積不同進(jìn)行分離,大分子先流出
譜圖的表示方法:柱后流出物濃度隨保留值的變化
提供的信息:高聚物的平均分子量及其分布
熱重法 TG
分析原理:在控溫環(huán)境中,樣品重量隨溫度或時(shí)間變化
譜圖的表示方法:樣品的重量分?jǐn)?shù)隨溫度或時(shí)間的變化曲線
提供的信息:曲線陡降處為樣品失重區(qū),平臺(tái)區(qū)為樣品的熱穩(wěn)定區(qū)
熱差分析 DTA
分析原理:樣品與參比物處于同一控溫環(huán)境中,由于二者導(dǎo)熱系數(shù)不同產(chǎn)生溫差,記錄溫度隨環(huán)境溫度或時(shí)間的變化
譜圖的表示方法:溫差隨環(huán)境溫度或時(shí)間的變化曲線
提供的信息:提供聚合物熱轉(zhuǎn)變溫度及各種熱效應(yīng)的信息
示差掃描量熱分析 DSC
分析原理:樣品與參比物處于同一控溫環(huán)境中,記錄維持溫差為零時(shí),所需能量隨環(huán)境溫度或時(shí)間的變化
譜圖的表示方法:熱量或其變化率隨環(huán)境溫度或時(shí)間的變化曲線
提供的信息:提供聚合物熱轉(zhuǎn)變溫度及各種熱效應(yīng)的信息
靜態(tài)熱―力分析 TMA
分析原理:樣品在恒力作用下產(chǎn)生的形變隨溫度或時(shí)間變化
譜圖的表示方法:樣品形變值隨溫度或時(shí)間變化曲線
提供的信息:熱轉(zhuǎn)變溫度和力學(xué)狀態(tài)
動(dòng)態(tài)熱―力分析 DMA
分析原理:樣品在周期性變化的外力作用下產(chǎn)生的形變隨溫度的變化
譜圖的表示方法:模量或tgδ隨溫度變化曲線
提供的信息:熱轉(zhuǎn)變溫度模量和tgδ
透射電子顯微術(shù) TEM
分析原理:高能電子束穿透試樣時(shí)發(fā)生散射、吸收、干涉和衍射,使得在相平面形成襯度,顯示出圖象
譜圖的表示方法:質(zhì)厚襯度象、明場(chǎng)衍襯象、暗場(chǎng)衍襯象、晶格條紋象、和分子象
提供的信息:晶體形貌、分子量分布、微孔尺寸分布、多相結(jié)構(gòu)和晶格與缺陷等
掃描電子顯微術(shù) SEM
分析原理:用電子技術(shù)檢測(cè)高能電子束與樣品作用時(shí)產(chǎn)生二次電子、背散射電子、吸收電子、X射線等并放大成象
譜圖的表示方法:背散射象、二次電子象、吸收電流象、元素的線分布和面分布等
提供的信息:斷口形貌、表面顯微結(jié)構(gòu)、薄膜內(nèi)部的顯微結(jié)構(gòu)、微區(qū)元素分析與定量元素分析等
原子吸收 AAS
原理:通過(guò)原子化器將待測(cè)試樣原子化,待測(cè)原子吸收待測(cè)元素空心陰極燈的光,從而使用檢測(cè)器檢測(cè)到的能量變低,從而得到吸光度。吸光度與待測(cè)元素的濃度成正比。
電感耦合高頻等離子體 ICP
原理:利用氬等離子體產(chǎn)生的高溫使用試樣*分解形成激發(fā)態(tài)的原子和離子,由于激發(fā)態(tài)的原子和離子不穩(wěn)定,外層電子會(huì)從激發(fā)態(tài)向低的能級(jí)躍遷,因此發(fā)射出特征的譜線。通過(guò)光柵等分光后,利用檢測(cè)器檢測(cè)特定波長(zhǎng)的強(qiáng)度,光的強(qiáng)度與待測(cè)元素濃度成正比。
x射線衍射XRD
X射線是原子內(nèi)層電子在高速運(yùn)動(dòng)電子的轟擊下躍遷而產(chǎn)生的光輻射,主要有連續(xù)X射線和特征X射線兩種。晶體可被用作X光的光柵,這些很大數(shù)目的原子或離子/分子所產(chǎn)生的相干散射將會(huì)發(fā)生光的干涉作用,從而影響散射的X射線的強(qiáng)度增強(qiáng)或減弱。由于大量原子散射波的疊加,互相干涉而產(chǎn)生zui大強(qiáng)度的光束稱為X射線的衍射線。
滿足衍射條件,可應(yīng)用布拉格公式:2dsinθ=λ
應(yīng)用已知波長(zhǎng)的X射線來(lái)測(cè)量θ角,從而計(jì)算出晶面間距d,這是用于X射線結(jié)構(gòu)分析;另一個(gè)是應(yīng)用已知d的晶體來(lái)測(cè)量θ角,從而計(jì)算出特征X射線的波長(zhǎng),進(jìn)而可在已有資料查出試樣中所含的元素。
(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)
立即詢價(jià)
您提交后,專屬客服將第一時(shí)間為您服務(wù)