詳細(xì)介紹
只用于動(dòng)物實(shí)驗(yàn)研究等
General Information
CAS number | 220797-16-0 |
Chemical formula | (C51H61N)n |
Molecular weight | Mw = 40 KDa (PD = 1.75) |
Absorption | λmax 390 nm (in THF) |
Fluorescence | λem 295 nm, 435 nm (in THF) |
HOMO/LUMO | HOMO = 5.3 eV, LUMO = 2.3 eV |
Solvents | THF, Toluene and Chloroform |
Synonyms | Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) |
Classification / Family | Hole transport material (HTL), Hole injection material (HIL), Electron blocking material (EBL), OLEDs, Perovskite solar cells, Organic and printed electronics |
Product Details
Purity | >99% |
Melting point | n.a. |
Colour | Pale yellow powder/fibers |
Chemical Structure
Chemical Structure of Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB); CAS No. 220797-16-0; Chemical Formula (C51H61N)n.
Applications
Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB) is a triarylamine based semiconductor with a band gap of 3 eV (HOMO and LUMO levels of 5.3 and 2.3 eV, respectively) and a relatively high hole mobility of 2 ×10-3 cm2 V-1 s-1.
Due to its low ionisation potential and high hole mobility, TFB serves primarily as hole transport layer (HTL), hole-injection layer (HIL) and electron-blocking layer (EBL) material in organic electronic devices. When built into device as an interface material, TFB as an electron blocking layer will not only reduce the chance of electron leakage, but also reduce the possibility of exciton quenching between the interface of the active layer and charge transport layer (F8BT/MoOx for example).
Device structure | ITO (120 nm)/PDOT:PSS(50 nm)/TFB (5 nm)/PYGTPA* (75 nm)/PEGPF* (10 nm)/Ca (10 nm)/Al (100 nm) [1] |
Colour | Deep blue |
Max. luminance | 9,242 cd/m2 |
Max. Current Efficiency | 0.85 cd/A |
Bias | 4.3 V |
Device structure | ITO/c-ZnO (50 nm)/F8BT (80 nm)/MoO3 (10 nm)/Au (50 nm) [2] | ITO/c-ZnO (50 nm)/F8BT (80 nm)/TFB (60 nm)/MoO3 (10 nm)/Au (50 nm) [2] |
Colour | Green | Green |
Max. luminance | 9,370 cd/m2 | 16,460 cd/m2 |
Max. Current Efficiency | 0.34 cd/A | 0.93 cd/A |
Bias | ~ 0.60 V | ~ 0.87 V |
Device structure | ITO/ZnO/CsPbI3/TFB (60 nm)/MoO3 (5 nm)/Ag (80 nm) [3] |
Colour | Red |
Max. Luminance | 206 cd/m2 |
Max. EQE | 5.7% |
*For chemical structure informations please refer to the cited references
Literature and Reviews
- All-solution-processed multilayer polymer/dendrimer light emitting diodes, M. Auer-Berger et al., Org. Electronics, 35, 164-170 (2016); http://dx.doi.org/10.1016/j.orgel.2016.04.044.
- High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation, D. Kabra et al., Adv. Mater., 20, 3447–3452 (2008); DOI: 10.1002/adma.200800202.
- Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method, G. Li et al., adv. Mater., 28, 3528–3534 (2016); DOI: 10.1002/adma.201600064.
- A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes, H. Yan et al., Appl. Phys. Lett., 84, 3873 (2004); doi: 10.1063/1.1737791.
- Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes, J-S. Kim et al., Appl. Phys. Lett., 87, 023506 (2005); doi: 10.1063/1.1992658.