產(chǎn)品簡介
廠家直接訂貨、原裝*、交期準(zhǔn)時?。g迎新老客戶?。?!
深圳市澤拓生物科技有限公司 |
—— 銷售熱線 ——
18123966210 |
只用于動物實驗研究等
M107 is in limited quantities, and will be discontinued once all stock is sold out.
Regioregular poly(3-hexylthiophene-2,5-diyl). Commonly known as P3HT.
Ossila provides a range of P3HT with different molecular weights and regioregularities for a variety of research purposes. Produced by Merck KGaA under the Lisicon® brand this high quality P3HT collection allows a wider range of science and engineering to be undertaken than by using a single P3HT.
The below P3HT is in stock for immediate dispatch.
Batch | RR | Mw | Mn | |
M102 | 95.7% | 65,200 | 29,600 | |
M103 | 94.2% | 54,200 | 23,600 | |
M105 | 95.5% | 94,100 | 49,500 | |
M106 | 94.7% | 34,100 | 19,500 | |
M107 | 93.6% | 31,300 | 15,600 |
代理英國Ossila材料P3HT 104934-50-1 Ossila有機光伏材料
The highest regioregularity P3HT (M104, RR = 96.3%) produces highly crystalline films and is recommended for OFETs, nanofibril formation and fast drying OPVs at the thin interference peak (90 nm). However, the exceptionally high regioregularity of this P3HT means that gelling and surface roughness can be an issue for slow-drying thick-film OPVs (>200 nm). Lower molecular weight and regioregularity P3HT is recommended for inkjet and other large area or slow drying deposition techniques where gelling/aggregation and surface roughness need to be avoided.
A fabrication report with mobility measurements of 0.12 cm2/Vs for M104 can be found below.
All the P3HT below is highly soluble (50 mg/ml) in chlorinated solvents such as chloroform, chlorobenzene, dichlorobenzene and trichlorobenzene. The intermediate and lower molecular weight P3HT materials are recommended for use with non-chlorinated solvents such as xylene, toluene and THF due to their increased solubility.代理英國Ossila材料P3HT 104934-50-1 Ossila有機光伏材料
CAS number: 104934-50-1
A full fabrication report can be downloaded here.
Field effect mobilities in excess of 0.12 cm2/Vs are recorded using M104 when the active layer is dispensed on OTS-treated silicon oxide dielectric by static spin coating from an optimized high/low boiling point solvent mix.
High hole mobility in conjunction with good solubility and partial air stability make regioregular P3HT a reference material of choice for both fundamental and applied research in organic electronic, physics and chemistry. As one of the most well-studied organic semiconductor, P3HT is often acknowledge to be one of the benchmark against which any new p-type or donor conjugate molecule should be compared and evaluated.
Mobility has previously been found to be positively correlated with increasing region-regularity, slow drying time (achieved using high boiling point solvent), lowering of the surface energy, and molecular weight in excess of 50 kD. These conditions favour p-p stacking parallels to the OFET substrate, which in turn results in improved charge transport across the transistor channel [1-13].
Substrate size | 20 x 15 mm |
Gate conductivity | 1-30 O·cm (Boron doped) |
Silicon oxide thickness | 300 nm |
Device per substrates | Five, common gate |
Channel length | 30 µm |
Channel width | 1000 µm |
The active layer solution preparation, spin coating, substrate annealing and measurements are performed in a glove box under a nitrogen atmosphere (H2O <0.1 PPM; O2 < 5/8 PPM).
For generic details on the fabrication of OPV devices, please see our written guide and video demonstration.
Active Layer Preparation
High-Regioregular and high molecular weight RR-P3HT (M104) (RR = 96.3%, Mw = 77,500, Mn = 38,700) is dissolved in a mix of high and low boiling point solvent in order to exploit the beneficial effect of long drying time and increase the wettability of low energy surface, respectively.
Substrate Cleaning
Thermal Deposition of Electrodes and Contact Pads
PFBT Treatment for Au Electrodes (Laminar flow)
OTS Treatment for SiO2 Dielectric (Laminar flow)
Contact Angle Assessment
The water-drop test on the treated silicon is a quick test to qualitatively assess the effect of the OTS on the silicon substrates, see Fig. 3. Note that quantitative assessment has previously shown this routine to produce contact angles of 110°C and this test is used as a quick reference to ensure fabrication has functioned correctly.
P3HT (M104) spin coating (glove box)