應(yīng)用
Y(II)或ΔF/Fm’ 或 (Fm’ – Fs )/Fm’) 是經(jīng)受時間考驗的光適應(yīng)測量參數(shù),比Fv/Fm對更多類型的植物脅迫更加敏感。已有的大量證據(jù)表明Fv/Fm對許多種植物脅迫和健康植物的光系統(tǒng)II的測量十分出色,而Y(II)或光量子產(chǎn)額則可測量實際光照下光適應(yīng)環(huán)境和生理狀況的光系統(tǒng)II的效率。
原理
采用調(diào)制飽和脈沖原理,測量植物的葉綠素?zé)晒?,測量參數(shù)包括植物的光量子產(chǎn)額Y(II)及相對電子傳遞速率ETR,最大光化學(xué)效率Fv/Fm,同時還可測量PAR、葉溫、相對濕度和葉片吸光率等環(huán)境參數(shù)。
特點
葉片吸光率測量:提供葉片吸收測量及隨環(huán)境變化導(dǎo)致的葉片吸收變化。根據(jù)Eichelman (2004) 葉片吸收在健康植物的變化范圍在0.7~0.9 之間。因此,為獲得準(zhǔn)確的ETR或“J”,Y(II)測量儀提供了一個可靠的測量方法,
Fv/Fm測量單元:用于暗適應(yīng)測量。
先進(jìn)的PAR葉夾:采用底部葉夾打開裝置,防止測量時誤操作打開葉夾。對傳感器進(jìn)行余弦校正,確保葉片相對測量光的角度不變。
Fm’校正:對于具有高光照強度歷史的植物,*關(guān)閉光反應(yīng)中心是一個問題,Y(II)測量儀使用Loriaux &Genty 2013的方法進(jìn)行Fm’ 校正,確??梢詼y得準(zhǔn)確的Fm’ 。
自動調(diào)制光設(shè)定:快速準(zhǔn)確自動的調(diào)整合適的調(diào)制光強,避免人工操作的誤差。
先進(jìn)算法避免飽和脈沖NPQ:采用25ms內(nèi)8點的平均值確定Fm、Fm’、Fo、Fs,消除飽和脈沖NPQ的影響和電子噪音。
更精確的葉溫測量:采用非接觸式紅外測量,測量精度可達(dá)±0.5℃。
直接測量相對濕度:含有測量氣體交換使用的固態(tài)傳感器,可測量相對濕度。
降低葉片遮擋的設(shè)計:傾斜的角度減少對葉片的遮擋,可以測量擬南芥等小葉。
系統(tǒng)組成
標(biāo)配: Y(II)光量子產(chǎn)額測量儀,F(xiàn)v/Fm測量儀及10個暗適應(yīng)葉夾,2個電池,2個充電器,一個便攜箱,文件U盤。
技術(shù)指標(biāo)
測量參數(shù):
Y(II)或ΔF/Fm‘、ETR、PAR、Tleaf、相對濕度、Fms或Fm’、Fs、α(葉片吸收率)、FV/FM、FV/FO,F(xiàn)O, FM, FV。
監(jiān)測模式:允許長時間監(jiān)測
技術(shù)參數(shù):
Y(II): 光適應(yīng)測量, 穩(wěn)態(tài)光合作用下的環(huán)境光
光源
飽和脈沖: LED白光源,使用PAR葉夾時可達(dá)7000μmols
調(diào)制光:紅光,LED 660nm,具有690nm窄通過濾器。
光化光源:環(huán)境光
檢測方法:脈沖調(diào)制法
PAR:測量400-700nm,余弦校正 ±2umols
Fv/Fm:暗適應(yīng)測量
光源:LED紅光飽和光閃,可達(dá)6000umols;
調(diào)制光:660nmLED 紅光,690nm濾波器
調(diào)制光可以根據(jù)實際測量自動調(diào)節(jié)到合適的強度,減少手動調(diào)節(jié)誤差,
相對濕度:0%~100%,±2%。
檢測器&過濾器:具有700~750nm帶通過濾的PIN光電二極管
可選配三腳架。
顯示:132 X 30 pixel 液晶顯示屏
取樣速率:1~10000點/秒自動切換。
測量時間:最短3s或也可設(shè)置長期監(jiān)測模式
存儲空間:2GB
輸出:USB下載數(shù)據(jù),用Excel查看,無需安裝其他專用軟件
供電:USB鋰離子電池(普通充電寶),可用8小時
尺寸:便攜箱尺寸為14”x 11”x 6”,儀器為9’’長
質(zhì)量:Y(II) 測量儀0.45 kg
Fv/Fm測量儀0.36 kg.
加便攜箱和附件總重1.95 kg.
工作溫度:0℃ ~ 50℃
產(chǎn)地
美國
文獻(xiàn)
Adams & Demming-Adams 2004 – Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams, From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pages 598 -599
Adams WW III, Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458
Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp365-3376 Bios Scientific Publishers, Oxford
Ball MC., Butterworth JA., Roden JS., Christian R., Egerton JJG., (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319
Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Bukhov & Carpentier 2004 – Effects of Water Stress on the Photosynthetic Efficiency of Plants, Bukhov NG., & Robert Carpentier, From Chapter 24, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George
Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay, Plant Physiology, Jan. 2007, Vol 143, pp108-121
Burke J., Franks C.D. Burow G., Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm, Agronomy Journal 102:1118-1122 May 2010
Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npq
Cazzaniga S, Osto L.D., Kong S-G., Wada M., Bassi R., (2013) “Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal, Volume 76, Issue 4, pages568–579, November 2013 DOI: 10.1111/tpj.12314
Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.”
Adams WW III, Demmig-Adams B., Vernhoeven AS., and Barker DH., (1995) Photoinhibition during winter stress – Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany, 55(403):1607-1621
Journal of Experimental Botany, 52(362):1865-1872Crafts-Brandner S. J., Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1, 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74
all’Osto L, Cazzaniga S, Wada M, Bassi R. (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil. Trans. R. Soc. B 369: 20130221.htt://dx.doi.org/10.1098/rstb.2013.0221
da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3, Pages 409 – 420 2008
Eichelman H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Niinemets O., Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density, Plant Biology 6 (2004):307-318
Eyodogan F., Oz M. T. (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant (2007) 29:485-493
Flexas 1999 – “Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines”J. FLEXAS, J. M. ESCALONA & H. MEDRANO Plant, Cell & Environment Volume 22 Issue 1 Page 39-48, January 1999
Flexas 2000 – “Steady-State and Maximum Chlorophyll Fluorescence Responses to Water Stress In Grape Vine Leaves: A New Remote Sensing System”, J. Flexas, MJ Briantais, Z Cerovic, H Medrano, I Moya, Remote Sensing Environment 73:283-270 Physiologia Plantarum, Volume 114, Number 2, February 2002 , pp. 231-240(10)
Gonias E. D. Oosterhuis D.M., Bibi A.C. & Brown R.S. (2003) YIELD, GROWTH AND PHYSIOLOGY OF TRIMAX TM TREATED COTTON, Summaries of Arkansas Cotton Research 2003
Hendrickson L., Furbank R., & Chow (2004) A simple alternative approach to assessing the fate of absorbed Light energy using chlorophyll fluorescence. Photosynthesis Research 82: 73-81
Kramer D. M., Johnson G., Kiirats O., Edwards G. (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79: 209-218
Krause G.H., Weis E. (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. 5, 139-157.
Krupa Z., Oquist G., and Huner N., (1993) The effects of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiol Plant 88, 626-630
D Edwards GE and Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102
Laisk A and Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Ribulose-1,5-bisphosphate carboxylase / oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110: 903–912
Photosynthesis in the water-stressed C grass is mainly limited by stomata with both rapidly and slowly imposed water deficits. Flexas (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C plants Flexas J., Escalona J. M., Evain S., Gulías J., Moya I., Charles Barry Osmond C.B., and Medrano H. 4 Setaria sphacelata
Earl H., Said Ennahli S., (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research 82: 177186, 2004.Laisk A., Oja V, Eichelmanna H., Luca Dall'Osto L. (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1, Biochimica et Biophysica Acta 1837 (2014) 315–325
Loriaux S.D., R.A Burns,Welles J.M., McDermitt D.K. Genty B. (2006) “Determination of Maximal Chlorophyll Fluorescence Using A Multiphase Single Flash of Sub-Saturating Intensity”. Abstract # P13011 August 1996.
American Society of Plant Biologists Annual Meetings, Boston MA LORIAUX S.D, AVENSON T.J., WELLES J.M., MCDERMITT D.K., ECKLES R. D., RIENSCHE B. & GENTY B. (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity Plant, Cell and Environment (2013) 36, 1755–1770 doi: 10.1111/pce.12115
Maai E., Shimada S., Yamada M.,, Sugiyama T., Miyake H., and Taniguchi M., (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid Journal of Experimental Botany, Vol. 62, No. 9, pp. 3213–3221, 2011, doi:10.1093/jxb/err008 Advance Access publication 21 February, 2011
Moradi F. and Ismail A. (2007) Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice Annals of Botany 99(6):1161-1173
Nedbal L. Whitmarsh J. (2004) Chlorophyll Fluorescence Imaging of Leaves and Fruits From Chapter 14, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, TheNetherlands, page 389 -407
Netondo G., Onyango J., and Beck E., (2004) Sorghum and Salinity I. Response of Growth,Water Relations, and Ion Accumulation to NaCl Salinity, Crop Science 44:797-805
Siffel P., & Braunova Z., (1999) Release and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynthesis Research 61: 217-226
Strasser R.J, Tsimilli-Michael M., and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 340 Tripathy BC, Bhatia B., Mohanty P., (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim Biophys Acta 638:217-224
Vredenberg W., Kay J. and Russotti R. (2013) The instrumental implementation of a routine for quantitative analysis of photochemical-induced variable chlorophyll fluorescence in leaves: Properties and prospects. ISPR conference in St. Louis, Poster mail: wim.vredenberg@wur.nl mail: ?iv ák M., Bresti M., Olšovská K., Slamka P.(2008) Performance index as a sensitive indicator of water stress in PLANT SOIL ENVIRON., , 2008 (4): 133–139
Oquist G., and Huner N., (1991) Effects of Cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring serials: A fluorescence analysis. Functional Ecology 5: 91-100